

ОСЦИЛЛЯЦИОННЫЕ ИЗМЕРЕНИЯ С НОВЫМ БЛИЖНИМ ДЕТЕКТОРОМ Т2К

Сергей Суворов

Yu. Kudenko Fest Троицк 5.10.2021

ACCELERATOR NEUTRINO EXPERIMENTS

- Accelerator ν experiments:
 - precisely controlled pure $\stackrel{(-)}{\nu}_{\mu}$ beam
 - allow to study:
 - appearance (ν_e) & disappearance (ν_μ) channel
 - neutrino & anti-neutrino oscillations
- Beam production:

CP violation measurements

J-PARC Super-K Off-axis ND 30GeV decay volume proton beam Off-axis angle 2.5 deg. target & 3horns ш beam dump beam axis muon monitor **On-axis ND (INGRID)** 118m 295km 280m 0m

ND280 UPGRADE MOTIVATION

• T2K was approved to collect 20×10^{21} protons on target stat. (T2K-II stage)

- Now we are limited by statistics
- For T2K-II systematic is critical for search for CPV
 - CPV sensitivity with current and improved systematics vs statistics

$$P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23} \sin^{2}\theta_{13} \sin^{2}\frac{\Delta m_{32}^{2}L}{4E_{v}}$$
$$-\sin 2\theta_{12} \sin 2\theta_{13} \cos \theta_{13} \sin \delta \sin^{2}\frac{\Delta m_{32}^{2}L}{4E_{v}} \sin \frac{\Delta m_{21}^{2}L}{4E_{v}}$$

e-like candidate observed: **16** in $\overline{\nu}$ -mode and **109** in ν -mode

T2K SYSTEMATIC IMPROVEMENTS

- Oscillation analysis systematic is dominated by the ν interaction models uncertainties
 - Precise measurements are complicated because of poorly studied nuclear effects

- Example: Neutrino energy reconstruction in Super-Kamiokande:
 - Charge Current Quasi Elastic (CCQE) interaction on the nucleon at rest is assumed
 - E_{ν} is reconstructed based on the lepton kinematics only

$$E_{\nu} = \frac{m_p^2 - (m_n - E_b)^2 - m_{\mu}^2 + 2(m_n - E_b)E_{\mu}}{2(m_n - E_b - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

- \blacktriangleright To perform more precise measurements of ν interaction:
 - new detector configuration
 - new analysis technique

ND280 UPGRADE MOTIVATION

The effect of interest:

ND UPGRADE CONCEPT

- Near detector upgrade project was started aiming:
 - full phase space coverage
 - -> same angular acceptance as far detector
 - Iower thresholds for muon, pion, proton
 - neutron detection from $\overline{\nu}$ interactions
 - e/γ conversion separation (ν_e measurements)

- A novel highly segmented scintillator detector
- Two new TPCs with resistive anode
- 6 time of flights panels around new sub-detectors

NEW SCINTILLATOR DETECTOR (SUPER FGD)

A novel detector made from scintillator cubes

- ► 1x1x1 *cm*³ cube
 - Iow energy thresholds
 - high spatial resolution
 - ▶ 3D reconstruction

- Unique for scintillator detector!
- fully active plastic detector -> no track distortions
- Adds 2 tons of fiducial volume to current FGDs
- We are pioneering R&D of such a neutrino detector
 - there are proposals to use similar detector in other experiments (e.g. DUNE)

SUPERFGD PRODUCTION

- Major milestone is achieved in the detector production
- Detector production at Uniplast (Vladimir) is finalised
- Planes of scintillator cubes are assembled at INR
- Assembly & Integration procedures are under severe development in collaboration with Dubna and CERN

SUPERFGD PERFORMANCE

- Fine granularity allows reconstruction of low momentum protons, thus more accurate neutrino interaction measurements
- SuperFGD can perform particle identification with dE/dx

0.6

0.5

0.4

0.3

0.2

0.1

400

600

800

200

ND Upgrade threshold

Current efficiency

1000

1200

1400

• Expected gain on ν cross-section measurements - arXiv:<u>2108.11779</u>

NEUTRONS IN SUPERFGD

- In SuperFGD neutron can be reconstructed with a scattering
 - neutron detection from $\overline{\nu} + p \rightarrow \mu^+ + n$
 - neutron energy can be measured with Time of Flight (ToF)

 \overline{v} t_1 n t_2 n^*

- Transverse momentum imbalance can be studied
 - neutrino interaction kinematics in plastic detector (C_8H_8) is different for Carbon and Hydrogen

- Such an analysis was performed for ν $(\nu + n \rightarrow \mu^- + p)$. with both μ and p detection
 - neutron detection is not possible in current ND280 configuration
- Simulation shows high neutron cluster detection efficiency ~ 90%

NEUTRONS IN SUPERFGD

- SuperFGD time resolution ~0.95 ns (from beamtests with MIP)
- Improve the neutron energy reconstruction accuracy:
 - Iever-arm cut selects neutrons that travel longer distance
 - I.y. cut select neutron clusters with more light then a MIP
- Reasonable neutron energy resolution was observed:

Phys. Rev. D 101, 092003 (2020)

Neutron kinematics measurements eliminate dependence from poorly studied nuclear effects in $E_{\overline{\nu}}$ measurements

NEW TIME PROJECTION CHAMBERS

- High angle tracks from the target are tracked with 2 new TPCs
 - Iow material budget -> minimal track distortion at SFGD-TPC passage
 - Resistive MicroMegas (MM) modules significantly improve spatial resolution keeping pad size the same
- A resistive layer on top of sensitive pads
 - charge spreading -> avalanche position is reconstructed based on information from several pads --> gain accuracy
 - charge measurements are correlated --> concerns about dE/dx resolution

PHYSICS BENEFITS OF THE NEW TPC

- > The main advantage of the resistive MM is improved spatial resolution
- ND280 is a magnetised detector
 - -> momentum resolution is going to be improved

SUMMARY

- Precise measurements of CP-violation in T2K experiment requires significant systematics reduction
- Near detector upgrade program aims to reduce uncertainties in oscillation measurements 5% –> 3%
- Brand new detectors R&D are under development
 - Strong contribution of the INR group to the R&D and production of the brand new scintillator neutrino target
- Detector assembly is scheduled in 2022
- Rich physics program is awaited with the new setup
 - Precise measurements of the neutrino cross section
 - Search for CP violation with sensitivities $\sim 3\sigma$ in the wide range of δ_{CP}
 - Exotic models constrain (e.g. <u>10.1016/j.physletb.2021.136641</u>)

NEUTRINO OSCILLATIONS

- Neutrino production and detection -> flavor states: e, μ, τ
- **Propagation** -> mass states $\nu_1, \nu_2, \nu_3 = exp(-i\Delta Et) \approx exp\left(-i\frac{\Delta m^2}{2E}L\right)$
- Relation of the flavor and mass states -> mixing matrix (3 angles, 3 phases)

> Probability of the particular flavor detection oscillates along L/E_{ν}

muon neutrino –> electron neutrino, tau neutrino

Two channels to study ν oscillations: $P(v_{\mu} \rightarrow v_{\mu}) \approx 1 - (\cos^{4}\theta_{13}\sin^{2}2\theta_{23} + \sin^{2}2\theta_{13}\sin^{2}\theta_{23})\sin^{2}\frac{\Delta m_{31}^{2}L}{AE}$ $P(v_{\mu} \rightarrow v_{e}) \approx \sin^{2}\theta_{23}\sin^{2}\theta_{13}\sin^{2}\frac{\Delta m_{32}^{2}L}{4E_{\nu}}$ $-\sin^{2}\theta_{12}\sin^{2}\theta_{13}\cos^{2}\theta_{13}\sin^{2}\frac{\Delta m_{32}^{2}L}{4E_{\nu}}\sin\frac{\Delta m_{21}^{2}L}{4E_{\nu}}$

Only appearance channel is sensitive to CP violation phase δ_{CP}

	Pre-BANFF			Post-BANFF		
Group	Mean	1σ	%	Mean	1σ	%
SK Detector	-	-	-	273.06	6.56	2.40
SK FSI+SI+PN	-	-	-	272.36	6.01	2.21
Flux+Xsec constrained	259.08	36.84	14.22	270.71	8.86	3.27
$\sigma(u_e)/\sigma(ar{ u}_e)$	-	-	-	272.40	0.00	0.00
$NC1\gamma$	-	-	-	272.40	0.00	0.00
NC Other	-	-	-	272.40	0.69	0.25
E _b	-	-	-	272.31	6.48	2.38
Osc	-	-	-	272.44	0.07	0.03
All	258.96	37.96	14.66	271.33	13.88	5.12
All with osc	258.99	37.97	14.66	271.36	13.89	5.12

Table 20: Uncertainty on the number of event in each SK sample broken by error source after the BANFF fit.

	\parallel 1-Ring μ	1-Ring e
Error source	\parallel FHC \mid RHC \parallel FHC \mid	RHC FHC CC1 π
Beam	\parallel 4.3% \mid 4.1% \parallel 4.4% \mid	4.2% 4.4%
Cross-section (constr. by ND280) Cross-section (all)	$\left \begin{array}{c c c c c c c c c c c c c c c c c c c$	$\begin{array}{c ccc} 4.1\% & & 4.1\% \\ 6.2\% & & 5.6\% \end{array}$
Beam + Cross-section (constr. by ND280) Beam + Cross-section (all) New E_b fake data parameter	$ \begin{vmatrix} 3.3\% & 3.3\% & 3.3\% \\ 4.4\% & 2.9\% & 7.7\% \\ 3.2\% & 1.3\% & 7.2\% \end{vmatrix} $	$\begin{array}{c ccc} 3.1\% & 4.0\% \\ 5.7\% & 5.6\% \\ 4.1\% & 2.8\% \end{array}$
SK+FSI+SI	\parallel 3.3% \mid 2.9% \parallel 4.1% \mid	$4.3\% \mid 16.6\%$
Total	$\parallel 5.5\% \mid 4.4\% \parallel 8.8\% \mid$	7.3% 17.8%

(a) Assuming the MH is unknown.

(b) Assuming the MH is known – measured by an outside experiment.

NEUTRONS IN SFGD

$$\sigma_t^{ly} = 0.95 \text{ ns}/\sqrt{3} \cdot \sqrt{40 \text{ PE/LY}},$$

 $\sigma_t^{ch} = 0.95 \text{ ns}/\sqrt{\#\text{channels}},$

 $\sigma_t^{ly} > 200 \,\mathrm{ps}$ optimistic $\sigma_t^{ch} > 200 \,\mathrm{ps}$ conservative